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Annual Summary Report

NR 099 - 400, Project Order PO 2 - 0193

Non-Equilibrium Effects in Fast Moving Plasmas

This report summarizes the research done at the Naval Postgraduate School

on laser produced plasmas. The objective of this past year's research was to

investigate the dependence of self-generated magnetic fields on the dynamics

of the laser produced plasma, laser power density, and ambient background pres-

sure. The spatial and temporal variations of the self-generated magnetic fields

were mapped extensively. Reversal of the spontaneous magnetic field associated

with the expanding laser produced plasma has been found at times later than the

cessation of the laser pulse. This indicates the generation of magnetic fields

by the dynamics of the plasma, independently of the laser-target interaction.

SELF-GENERATED MAGNETIC FIELDS IN LASER PRODUCED PLASMAS

In studying the generation of plasmas by lasers, it has been generally

assumed that the only magnetic field present was the externally applied field.

However, magnetic fields may spontaneously arise in a fast streaming plasma when

inhomogeneities occur with nonaligned density and temperature gradients. These

magnetic fields may be quite large in the focal spot region and thus influence

the dynamics and heat conduction of the electrons and the coupling of the

expanding plasma to a bias magnetic field.

The equation describing the development of the magnetic fields is obtained

from the generalized Ohm's law,

J = a(t + $ x t + — V? ) (1)
e en e

e



where all quantities have their conventional meanings and the subscript e refers

to the electron component of that quantity. Using the Itexwell curl equation this

can be written in the form

|f=Vx(^ x S) + — V*3 + — VT xVn (2)
3t e u o en e eHo e

The first two terms on the right hand side are the flow and diffusion terms; the

generation of a magnetic field requires that the last term, the source term S,

shall be non-zero. Anisotropics in the electron density and temperature gradients

lead to the occurrence of spontaneous magnetic fields in the plasma. Such spon-

taneous magnetic fields have been observed in laser plasmas in the absence of

applied fields 1
s
2

>
3

. Stamper, et al 3
, have suggested that these spontaneous fields

result from thermo-electric currents associated with gradients in temperature and

pressure occurring during the early stages of formation and heating of a plasma by

a giant laser pulse.

According to the source term in Eq. (2)

£ = J^ VT x Vn (3)
en e e

e

no field generation will occur unless VT and Vn are nonparallel. The geometry

of the magnetic field is determined by the geometry of the laser produced plasma.

A plasma produced by laser impact on a planar target expands in the direction of

the target normal and is axisymmetric about its expansion direction so that there

are no azimuthal density or temperature gradients. Then according to Eq. (3),

the field will be generated entirely in the azimuthal direction and will be

symmetric about the normal. During the laser heating of the plasma, the largest



contribution to the source term comes from a temperature gradient in the negative

radial direction and the density gradient due to the expansion of the plasma in

direction of the target normal. The temperature gradient is a consequence of the

finite radial extent of the laser beam and arises near the radial edge of the

focal spot. This combination of VT and Vn will generate magnetic field in the

azimuthal direction as observed initially4 (Appendix A)

.

The strongest field production can be expected to occur at the front of the

expanding laser plasma, since the quantity — Vn in Eq. (3) is largest there 5
.

e

Since this is also the region where the laser plasma and the ambient photoionized

background will interact, it is possible for the background to influence the

generation of the fields.

EXPERIMENTAL RESULTS

The beam from a 300 MW (25 nsec) neodymium-glass laser was focused at a 30°

incident angle onto a mylar or aluminum disc target in a cylindrical polar coordi-

nate system centered on the burn spot with z axis along the target normal. The

magnetic field was analyzed with magnetic inductive probes about 1 mm in diameter.

Electric double probes were used to study the density variations of the laser

plasma.

The azimuthal spontaneous magnetic field has been mapped extensively.

Figure 1 shows the contour plots of Bn detected at each point in the

plane for ambient nitrogen pressures of 0.1, 5.0 and 250 mTorr. In these plots,

the foil target is located at the left edge of the plot, and is perpendicular to

the plane of the figure. The laser beam comes in from the right at 30° to the

plane of the figure and strikes the target at a lower left hand corner of the plot.

The resulting laser plasma then expands to the right. The region where the laser

beam intersects the plane of the plots cannot be probed without interfering with

the incident beam, and is left blank. The direction of the magnetic field is



into the plane of Figure 1. The contour lines connect points at which the mag-

nitude of B. is the same. Mapping the field at positions not in the plane of

the contour plots established that the azimuthal magnetic field was axisym-

metrical about the target normal. Hence, the contour plots give full three-

dimensional representations of the fields if they are rotated about the target

normal.

The field measurements were also time-resolved to study the temporal vari-

ations; the contour plots derived from these measurements show that the magnetic

field, like the laser plasma, expands and propagates outward from the target.

The propagation velocity of the peak field is about 10 7 cm/sec for ambient pres-

sures of 0.1 and 5 mTorr of nitrogen and about 6.5 x 10 6 cm/sec for 250 mTorr.

Figure 2 shows the current density flow pattern derived from the magnetic

field data at 120 nsec for 250 mTorr of nitrogen. The strongest current flow is

along the target normal and has a magnitude of 612 amps/cm2 . The current flow

pattern is toroidal in three dimensions, with no current flowing in the azimuthal

direction. It should be noted here that the front of the expanding laser-produced

plasma has propagated to a distance of about 0.8 cm in the axial and 0.4 cm in the

radial direction. It is obvious from Fig. 2 that the current is flowing through

the photoionized background plasma as well as through the laser plasma.

The strength of the self-generated magnetic field was found to depend quite

strongly on the ambient pressure of the background gas (Fig. 1 of reference 5);

(Appendix B) . This figure shows the way in which the peak azimuthal magnetic

field detected at fixed position depends on the background nitrogen pressure

for aluminum and mylar targets. Three separate regions are evident in this figure.

At pressures lower than 1 mTorr, the magnitude of BQ is independent of pressure

but dependent on target material. For pressures between 1 mTorr and 200 mTorr,

the field magnitude increases considerably above the low-pressure value. In this



region the coupling of the background with the laser plasma directly influences

the source term S of Eq. (3). This influence can be expressed by writing the

source term

K - K(VT)
r

S = -^- VT x Vn in the form ~- where (VT)
en e e e6 r

e

is the radial temperature gradient, here in the negative radial direction, and

Vn ..

e ^ 1

n
K

6
e

is inversely proportional to the front thickness of the laser plasma. The density

gradient is in the negative z direction. As the background pressure increases, 6

decreases, as the front of the streaming laser plasma steepens due to momentum

coupling with the background plasma.

From Eq. (3) it also follows that the source term reverses its sign if the

direction of the temperature or the density gradient is reversed. It should be

possible to create azimuthal magnetic fields in a direction opposite to the initial

fields by reversing the direction of the source term density gradient at late times,

in the plasma expansion. Magnetic field reversal has been observed several hundred

nanoseconds after shut off of the laser pulse . The field reversal was produced by

allowing the expanding laser plasma to impinge on a glass plate placed at 1.15 cm

from the target. The resultant pile up of the plasma caused production of azimuthal

magnetic fields in a direction opposite to the initial fields; see Fig. 3 of

reference 5 ; (Appendix B) . The appearance of magnetic field of reversed sign at

later time is evidence of field generation several hundred nanoseconds after laser

shutoff

.



It may be assumed that magnetic fields can be generated in the absence of

laser radiation in fast plasma streamers if non-parallel temperature and density

gradients are set up due to an interaction with a background plasma.
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INVESTIGATION OF SELF-GENERATED MAGNETIC FIELDS IN LASER PRODUCED PLASMAS

by

F. Schwirzke and L. L. McKee

Naval Postgraduate School, Monterey, California 93940

Abstract ; The dynamics of a laser produced plasma and the dependence of the

self-generated magnetic fields on position, time, laser power density, and

ambient background pressure has been investigated. Electrons and ions can

not separate when the laser produced plasma expands into a high vacuum.

With a background gas the laser heated electrons can stream freely out of

the laser heated region, through the photo-ionized background plasma and

considerably higher magnetic fields are generated.

A hot dense plasma is produced in the initial phase of the impact of a high

power laser pulse on a solid target. Further absorption of the laser radi-

ation and reflection occur in a plasma layer in front of the target. Radi-

ative transport of the laser energy is cut off in the overdense plasma and

heat conduction by electrons becomes the principal mechanism of energy

transfer from the laser heated plasma layer to the target. Anisotropics in

the electron density and temperature gradients or large scale turbulence in

the expanding, laser produced plasma can lead to the occurrence of spon-

taneous magnetic fields. These fields can influence the electronic heat

conduction and the dynamics of the plasma.

References [1-4] reported observing spontaneous magnetic fields associated

with a laser produced plasma. The spontaneous magnetic fields were gene-

rated in the absence of external applied magnetic fields and are mainly in

the azimuthal direction with reference to the target normal. This compo-

nent of the magnetic field corresponds to an electron current which travels

out from the target along the normal. Only a brief study of the dependence

of the self-generated magnetic fields on plasma and laser parameters was

published in [3] so we mapped the magnetic fields as function of time and

laser power for a better understanding of the generating mechanism. The

primary parameters upon which the magnetic fields were found to depend were

position, laser power density at the target's surface and ambient background

pressure of nitrogen gas.

A single stage amplified neodymium-doped glass laser was used with an out-

put of up to 450 MW (11 Joules in 24 nsec) . The target consisted of a Mylar

foil disk .005 in thick and about 5 cm in diameter. The foil could be



rotated to allow many shots to be made on a given foil. The vacuum chamber

in which the target was located was specially designed to facilitate the

detection of the fields.
v The laser beam entered the chamber and struck the

target at an angle of 30° with respect to the normal and to the target and

so that the laser beam and normal were both in a horizontal plane. This

angle was chosen so that the plasma which streamed normally out from the

target surface could be directly probed along the normal without having the

laser beam strike the probes. Diagnostics were performed with small (^2rrm

diameter) inductive magnetic probes. They were accurately calibrated by

insertion into carefully wound Helmholtz coils. In order to insure that

the probe data was meaningful, they were rotated by 180° , and the probe

signal was checked to make sure that it reversed in polarity. The probe

signals, which are proportional to dB/dt, were integrated by means of an RC

integrator before being displayed on the oscilloscope.

The magnetic probe signals were well defined pulses of fast rise (typically

50 nsec) and relatively slower decay (typically 250 nsec) . The arrival of

the magnetic field at the position of the probe was found to correspond to

the arrival of the outwardly streaming laser plasma - the probe signal

started at a later time relative to the laser pulse as the probe distance

from the laser focal spot was increased. This delay in time corresponded

to the expansion velocity of the laser plasma of about 10 7 cm/sec. As the

distance out from the target increased, the duration of the probe signal

also increased, indicating that the magnetic field became spatially more

diffuse as it travelled out with the plasma. A spatial mapping of the field

showed that the azimuthal field was circularly symmetric about the normal.

Since the plasma streams normally out from the surface of the target, this

is to be expected. At distances larger than 3mm from the surface along the

normal, the maximum field decreased exponentially at a pressure of 250 mTorr

from a maximum value of 220 Gauss, Figure 1. At distances closer than 3mm

the field also decreased from this maximum as the distance to the surface

decreased. At a given distance out along the normal, the field also

decreased exponentially as the probe was moved up to larger distances from

the normal. These experimental results show that the self-generated fields

do not scale with 1/r to extremely large values at small focal spot radius.

The location of the maximum of the B field, 3-4 mm in front of the target,

probably coincides with a position in the density profile where the laser

and plasma frequency are of the same order and strong plasma heating occurs

locally.
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Most important, at a given position, the strength of the magnetic fields

was found to depend quite strongly on the background pressure of nitrogen,

Figure 2. At a position of 4mm in front of the target and 3mm above the

normal to the target, the field was amplified by a factor of about 6

(38 Gauss to 210 Gauss) when the nitrogen pressure was increased frcm

0.1 mTorr to 200 mlbrr, for a laser power of 300 MW. As the pressure

increased above 200 mlbrr to 1000 mlbrr, the field was damped exponentially

with increasing pressure, due to the increased collision rate. This strong

interaction of the laser plasma with the background gas is actually an

interaction between counter streaming plasmas because the background gas

is photoionized by the laser plasma's radiation. The density in the back-

ground plasma, n M.0 15arr 3
, is several orders of magnitude smaller than

the critical density in the laser generated plasma, n~10 21cm~ 3
. This

indicates that the background plasma can hardly damp the expansion of the

laser plasma. The reason for the amplification of the fields between 1 and

200 mTorr then seems to be that a larger electric current can flow through

the ionized background plasma.

Figures 3a-d show the contours of constant magnetic induction as function of

time, at 40, 80, 160 and 200 nsec. The horizontal axis with the axial dis-

tance scale represents the normal to the target foil at the focal spot O and

hence this is the axis of symmetry. The B -field lines are perpendicular to

the contour lines with direction into the paper. B goes to zero and changes

direction if the magnetic probe is moved in r-direction across the axis of

symmetry. The Figures 3a-d show how the B-field is carried along with the

expanding plasma and damped with time. Figure 3d seems to indicate a

breakup of the expansion by an interchange instability.

Research sponsored by the Air Force Office of Scientific Research, Office of

Aerospace Research, United States Air Force, under AFOSR Grant No. MTPR-0004-

69, and the Office of Naval Research.
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Pressure Dependence of Self-Generated Magnetic Fields in Laser-Produced Plasmas

R. S. Bird, L. L. McKeeJ F. Schwirzke, and A. W. Cooper

Naval Postgraduate School, Monterey, California 93940

(Received 5 September 1972)

The systematic dependence of the magnitude of the self-generated magnetic fields of a laser-produced

plasma on nitrogen background pressure has been investigated. At expansion distances of a few

millimeters or more, the strongest fields were found to reside at the front of the streaming laser

plasma. Magnetic fields were created in the laser plasma long after laser shut off by allowing the

streaming plasma to impinge upon a glass plate.

Magnetic fields spontaneously generated in the

absence of applied fields have been observed in

several experiments with laser -produced plas-

mas. 1-3 Stamper et al.
3 have suggested that these

spontaneous fields result from thermo-electric

currents associated with temperature and pressure

gradients existing during the early stages of the

formation and heating of a plasma by a giant laser

pulse.

We have made a systematic study of the depen-

dence of the spontaneous magnetic fields on the

pressure of the background gas which indicates

that magnetic fields are generated by pressure

gradients in the front of the expanding laser plas-

ma. Field amplification or field reversal can be

caused by increase or reversal of the pressure

gradients in the plasma front long after the end of

the laser pulse.

The equation describing the development of the

magnetic fields is obtained from the generalized

Ohm's law

J = o-[E + Ve xB+(l/en e ) VPe ] , (1)

where all quantities have their conventional mean-
ing and the subscript e refers to the electron com-

ponent of that quantity

.

3B

Solving for E and using

VxE= -•
9/

gives

^=Vx(v>S) +— V2B+— VTexVn e . (2)

The first two terms on the right-hand side are the

flow and diffusion terms. The generation of a mag-
netic field requires that the last term, the source

term S, be nonzero.

The beam from a 300-MW (7. 5 J in25nsec) neo-

dymium -doped glass laser was focused by a lens

with a 28 -cm focal length. The principal targets

were aluminum and Mylar discs. The laser irra-

diation produced a 2-mm hole in the Mylar (disc

thickness 0. 01 cm) but did not penetrate the alumi-

num. The laser beam entered a vacuum chamber

and struck the target at an angle of 30° with re-

spect to the target normal. The resultant plasma

streamed out along the target normal4
defining a

convenient cylindrical -polar coordinate system

with the z axis along the target normal, the 6 = 0° line

vertically up, and the origin centered on the burn

spot. The magnetic field was analyzed with small
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FIG. 1. Maximum azimuthal magnetic field as a function of N2 background pressure at r= 0. 3 cm, 6=0° , and z = 0.

4

cm for aluminum and Mylar targets.

(~ 1-mm-diam) inductive probes. Electric double

probes were used to study the plasma density vari-

ations.

The propagation velocity of the laser plasma

front, as determined from the electric -double

-

probe signals, ranged from about 1. 5x 107 cm/sec
at 0. 1 mTorr N2 to 3xl0

6 cm/sec at 250 mTorr N2 .

These velocities were determined by computing the

average velocity of the maximum probe signals

along the line r = 0. 3 cm, 6 = 0° , for z values from
1. 0-2. 5 cm. The magnetic fields were primarily

azimuthal, symmetric about the z axis, and corre-

sponded to an electron current in the +z direction.

For pressures above 250 mTorr N2 and at distances

larger than about z= 1 cm, azimuthal magnetic

fields are generated at the front of an expanding

aluminum -laser plasma, which are in a direction

opposite to the initial fields. This phenomenon is

currently under investigation.

Figure 1 displays the manner in which the maxi-
mum azimuthal magnetic fields, detected at a fixed

position, depend on the background pressure of ni-

trogen for aluminum and Mylar targets. The pres-

sure at which the magnetic field attains its maxi-
mum value was found to decrease as the probe was

moved out along the line r = 0. 3 cm, 6 = 0. At all

positions checked (the closest being r=0. 3 cm, 6

= 2 = 0) a pressure dependence was observed. Fig-

ure 1 indicates that field amplification depends only

on the background gas and that, below about 1

mTorr, the fields are target dependent. The spa-

tial relationship of the magnetic fields to the laser

plasma density n
{
for an aluminum target and back-

ground pressures of 0. 1 and 5 mTorr at a time 300

nsec after the arrival of the laser pulse at the tar-

get surface is shown in Fig. 2. For the earliest

times checked (20 nsec), the maximum fields along

this line resided at the front of the expanding laser

plasma.

In a previous study, 5
it was observed that, for

background pressures above about 30 mTorr, the

streaming laser plasma swept up the photoionized

background plasma. This snowplowing of the am-
bient background plasma caused a pileup of the la-

ser plasma. The front thickness 6 of the laser

plasma was found to scale as the cube root of the

background pressure.

The pressure dependence of Fig. 1 shows three

regions of behavior. Below about 1 mTorr the

fields are pressure independent. In this region the
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background plasma density appears to be too small

to interact with the laser plasma for the scale

lengths of this experiment. In the region above 1

mTorr, the coupling of the background with the la-

ser plasma directly influences the source term of

Eq. (2). This influence can be shown by writing the

source term"§ = (k/ene)VTe
x Vn# in the form k(VT)r/

eb, where (VT)r is the radial temperature gradi-

ent, here in the negative r direction, and Vn
e /ne

- 1/6. The density gradient is in the negative 2 di-

rection and 6 is characteristic of the length over

which the density changes. As the background

pressure increases, 6 decreases, becoming of the

order of the shell thickness at the front of the

streaming laser plasma. In the region above 250

mTorr, irreversible dissipation of field energy into

particle energy is dominant.

In Fig. 2 the fields for a background pressure of

5 mTorr are larger than those for 0. 1 mTorr, with

the exception of the region from 2 = 1.3 to 2 = 1. 5

cm, where the fields for 0. 1 mTorr are slightly

larger. Thus it appears that magnetic fields have

been created along this line. An order -of-magni-

tude calculation of the classical diffusion time

shows it to be much larger than the experimental

time so that the increased field at the front does

not appear to be the result of field diffusion, but

the result of field generation at the front.

From Eq. (2), it follows that the source term re-

verses its sign if the direction of the pressure gra-

dient is reversed and it should be possible to cre-

ate azimuthal magnetic fields, in a direction oppo-

site to the initial fields, by reversing the direction

of the pressure gradient at late times in the plasma

expansion. Magnetic field reversal has been ob-

served several hundred nanoseconds after shut off

of the laser pulse. The field reversal was pro-

duced by allowing the expanding laser plasma to

impinge upon a glass plate placed at 2 = 1. 15 cm.

The resulting pileup of the plasma caused a rever-
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FIG. 3. Plasma density profile along the line r = 0.3 cm and = 0° for an aluminum target; upper- right-hand corner:

Be at r=0.3 cm, 6=0°, 2 = 1.0 cm; lower-right-hand corner: 2Je at r=0.3 cm, 6 = 0°, 2 = 1.0 cm.

sal of the pressure gradient, a reappearance of the

radial temperature gradient, and a corresponding

production of azimuthal magnetic fields in a direc-

tion opposite to the initial fields. Figure 3 shows
the plasma density profile for expansion into a

background of 5 mTorr N2 in the absence of the

glass plate. The upper insert shows the azimuthal

magnetic fields versus time at the position r= 0. 3

cm, 6 = 0, z = 1. cm without the glass plate in

place, while the lower insert shows the azimuthal

fields at the same position but with the glass plate

at z- 1. 15 cm and parallel to the target surface.

The magnetic field attains its largest negative val-

ue at a time t= 350 nsec, corresponding to the ar-

rival of the front maximum at the plate.

In conclusion, the magnetic fields are found to

depend on the background-gas pressure because the

background gas influences the pressure gradients in

the front of the streaming laser plasma. Also, mag-
netic fields can be produced long after laser shutoff.

It may be assumed that such a mechanism for the

generation of magnetic fields can occur in other

streaming plasmas, as for example, in the solar

wind encountering the earth's magnetic field.
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5E10 Self-Generated Magnetic Fields in a T.ager Produced
Plasma . F. SCHWIRZKE, L. L. McKEE, Naval Postgraduate
School - A 300 MW, 20 ns, Nd laser produced a plasma by
irradiation of a 0.005 in. MYIAR foil. The dynamics of
the plasma and the dependence of the self-generated mag-
netic fields on position, time, laser power density, and
ambient background pressure have been investigated. The
B-field is primarily azimuthal with respect to the target
normal and synmetric about it. The fields were mapped as
function of time showing a toroidal current flow pattern.
The B-field is carried along with the expanding plasma
and is decaying as function of time. After 150 ns the
regular contours of the field start to break up. The
strength of the B-field depends quite strongly on the
background pressure of N_. At a given position the field
was amplified by a factor of about 6 (38 to 210 gauss)
when the pressure was increased from 0.1 to 200 mTorr.
The B-field was damped exponentially with further
increasing pressure above 200 mTorr. The reason for the
anplification seems to be that a larger current can flow
through the photo-ionized background plasma. Work

supported by AFOSR (MLPR-0004-69) and CNR.
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